Antagonism of ultraviolet-light mutagenesis by the methyl-directed mismatch-repair system of Escherichia coli.

نویسندگان

  • H Liu
  • S R Hewitt
  • J B Hays
چکیده

Previous studies have demonstrated that the Escherichia coli MutHLS mismatch-repair system can process UV-irradiated DNA in vivo and that the human MSH2.MSH6 mismatch-repair protein binds more strongly in vitro to photoproduct/base mismatches than to "matched" photoproducts in DNA. We tested the hypothesis that mismatch repair directed against incorrect bases opposite photoproducts might reduce UV mutagenesis, using two alleles at E. coli lacZ codon 461, which revert, respectively, via CCC --> CTC and CTT --> CTC transitions. F' lacZ targets were mated from mut(+) donors into mutH, mutL, or mutS recipients, once cells were at substantial densities, to minimize spontaneous mutation prior to irradiation. In umu(+) mut(+) recipients, a range of UV fluences induced lac(+) revertant frequencies of 4-25 x 10(-8); these frequencies were consistently 2-fold higher in mutH, mutL, or mutS recipients. Since this effect on mutation frequency was unaltered by an Mfd(-) defect, it appears not to involve transcription-coupled excision repair. In mut(+) umuC122::Tn5 bacteria, UV mutagenesis (at 60 J/m(2)) was very low, but mutH or mutL or mutS mutations increased reversion of both lacZ alleles roughly 25-fold, to 5-10 x 10(-8). Thus, at UV doses too low to induce SOS functions, such as Umu(2)'D, most incorrect bases opposite occasional photoproducts may be removed by mismatch repair, whereas in heavily irradiated (SOS-induced) cells, mismatch repair may only correct some photoproduct/base mismatches, so UV mutagenesis remains substantial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-Directed Mutagenesis in Human Granulocyte-colony Stimulating Factor, Cloning and Expression in Escherichia coli

Human granulocyte colony stimulating factor (hG-CSF) induces proliferation and differentiation of granulocyte progenitor cells. This glycoprotein is currently being used for treatment of neutropenia, in patients who have undergone bone marrow transplantation. So far, different researchers have tried to enhance hG-CSF biological activity and stability. In this study, Polymerase Chain Reaction (P...

متن کامل

A point mutation in Escherichia coli DNA helicase II renders the enzyme nonfunctional in two DNA repair pathways. Evidence for initiation of unwinding from a nick in vivo.

Biosynthetic errors and DNA damage introduce mismatches and lesions in DNA that can lead to mutations. These abnormalities are susceptible to correction by a number of DNA repair mechanisms, each of which requires a distinct set of proteins. Escherichia coli DNA helicase II has been demonstrated to function in two DNA repair pathways, methyl-directed mismatch repair and UvrABC-mediated nucleoti...

متن کامل

The Escherichia coli methyl-directed mismatch repair system repairs base pairs containing oxidative lesions.

A major role of the methyl-directed mismatch repair (MMR) system of Escherichia coli is to repair postreplicative errors. In this report, we provide evidence that MMR also acts on oxidized DNA, preventing mutagenesis. When cells deficient in MMR are grown anaerobically, spontaneous mutation frequencies are reduced compared with those of the same cells grown aerobically. In addition, we show tha...

متن کامل

Conserved motifs II to VI of DNA helicase II from Escherichia coli are all required for biological activity.

There are seven conserved motifs (IA, IB, and II to VI) in DNA helicase II of Escherichia coli that have high homology among a large family of proteins involved in DNA metabolism. To address the functional importance of motifs II to VI, we employed site-directed mutagenesis to replace the charged amino acid residues in each motif with alanines. Cells carrying these mutant alleles exhibited high...

متن کامل

Recombinagenic processing of UV-light photoproducts in nonreplicating phage DNA by the Escherichia coli methyl-directed mismatch repair system.

Nonreplicating lambda phage DNA in homoimmune Escherichia coli lysogens provides a useful model system for study of processes that activate DNA for homologous recombination. We measured recombination by extracting phage DNA from infected cells, using it to transfect recA recipient cells, and scoring the frequency of recombinant infective centers. With unirradiated phage, recombinant frequencies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 154 2  شماره 

صفحات  -

تاریخ انتشار 2000